\qquad
\qquad Date \qquad
I. As we've learned earlier, $\boldsymbol{y}=\boldsymbol{x}^{2}$ can be transformed into $f(x)=a \cdot(x-h)^{2}+k$.

1. What effect does a have on the graph of $y=x^{2}$?

Vertically stretches (or compresses if $a b s(a)<1$) the entire graph by a factor of a.
2. What effect does h have on the graph of $y=x^{2}$?

Shifts the entire graph h units to the left (if positive) or right (if negative).
3. What effect does k have on the graph of $y=x^{2}$?

Shifts the entire graph k units up (if positive) or down (if negative).
II. You also know what $\boldsymbol{y}=\boldsymbol{x}^{3}$ looks like now. So consider the graph $g(\boldsymbol{x})=\mathbf{a} \cdot(\boldsymbol{x}-\boldsymbol{h})^{3}+\mathbf{k}$.

1. What effect does a have on the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}$?

Vertically stretches (or compresses if $a b s(a)<1$) the entire graph by a factor of a.
2. What effect does h have on the graph of $y=x^{3}$?

Shifts the entire graph h units to the left (if positive) or right (if negative).
3. What effect does k have on the graph of $\boldsymbol{y}=\boldsymbol{x}^{3}$?

Shifts the entire graph k units \underline{p} (if positive) or down (if negative).
III. The parent graph of a rational function is $\boldsymbol{y}=\frac{1}{\boldsymbol{x}}$. So consider $h(x)=k+\frac{a}{x-h}$.

1. What effect does a have on the graph of $y=\frac{1}{x}$?

Vertically stretches (or compresses if $a b s(a)<1$) the entire graph by a factor of a.
2. What effect does h have on the graph of $y=\frac{1}{x}$?

Shifts the entire graph h units to the left (if positive) or right (if negative).
3. What effect does k have on the graph of $y=\frac{1}{x}$?

Shifts the entire graph k units up (if positive) or down (if negative).
IV. Look at all the cases above, and then describe the locations of the variables in relation to the parent graph.

1. Where is a located? It's the coefficient in front of the function.

What does a do?
Vertically stretches (or compresses if $a b s(a)<1$) the entire graph by a factor of a. What happens when $a<0$? It reflects the graph over the x-axis.
2. Where is h located?

Added or subtracted directly to x.
What does h do?
Shifts the entire graph h units to the left (if positive) or right (if negative).
3. Where is \mathbf{k} located?

Added or subtracted to the function.
What does k do?
Shifts the entire graph k units up
(if positive) or down (if negative).
V. Consider the sketch of $f(x)$ to the right. Answer questions about $f(x)$ and sketch each of the following transformations of $f(x)$.

8. Sketch -f(x)

11. Sketch $3 f(x)$

6. Sketch $2 f(x)$

9. Sketch $-f(x)+2$

12. Sketch $\left(\frac{1}{2}\right) f(x)$

7. Sketch $f(x+1)-2$

10. Sketch $-f(x+2)$

13. Sketch $1+3 f(x-2)$

VI. For each of the following: a) Evaluate f(2), b) Describe the transformations of $y=1 / x$ that have been done to this function, c) Use this information to sketch the graph, d) Find the domain of the function, e) Find the range of the function, and f) Write equations of all the asymptotes.

VII. For each of the following: a) Evaluate $f(-3)$, b) Divide this rational function to write its quotient in transformation form, c) Describe the transformations of $y=1 / x$ that have been done to this function, d) Use this information to sketch the graph, e) Find the domain of the function, f) Find the range of the function, and g) Write equations of all the asymptotes.

Problem:	$f(x)=\frac{x-2}{x+1}$	$g(x)=\frac{3 x+5}{x-2}$	$h(x)=\frac{x-4}{2 x-5}$
Evaluate $\boldsymbol{x}=-3$	$f(-3)=2.5$	$g(-3)=.8$	$h(-3)=7 / 11$
Quotient	$\begin{aligned} & f(x)=1-\frac{3}{x+1} \text { or } \\ & -\frac{3}{x+1}+1 \end{aligned}$	$g(x)=\frac{11}{x-2}+3$	$\begin{aligned} & h(x)= \\ & -\frac{3 / 2}{2 x-5}+\frac{1}{2}=-\frac{3}{2(2 x-5)}+\frac{1}{2} \end{aligned}$
Transformations	Left 1, up 1, Reflects across the \times axis	Right 2, up 3	Right 5/2, up $\frac{1}{2}$, reflect across \times axis
Sketch the graph	(Graph in graphing calculator. Notice the location of the horizontal and vertical asymptotes and compare these to the transformations)	\rightarrow	\rightarrow
Domain	$x \neq-1$	$x \neq 2$	$x \neq 2.5$
Range	$y \neq 1$	$y \neq 3$	$y \neq .5$
Asymptotes	$x=-1 \text { and } y=$	$\begin{aligned} & x=2 \quad \text { and } \\ & y=3 \end{aligned}$	$x=2.5$ and $y=.5$

VIII. REVIEW of what I've already mastered: Perform the indicated operations, and simplify completely.
A) $\frac{x+3}{x-7} \cdot \frac{x^{2}-6 x-7}{x^{2}-9}$
B) $\frac{25 x^{2}-100}{x^{2}-x-12} \div \frac{x^{2}-2 x-24}{2 x^{2}-72}$
$\frac{x+1}{x-3}$

$$
\frac{50(x+2)(x-2)(x+6)}{(x-4)(x+4)(x+3)} \text { or } \frac{50 x^{3}+300 x^{2}-200 x-1200}{(x-4)(x+4)(x+3)}
$$

C) $\frac{\frac{1}{x+2}}{1+\frac{1}{x+2}}$
D) $\frac{12+\frac{1}{x}-\frac{1}{x^{2}}}{4+\frac{1}{x}}$

$$
\frac{1}{x+3}
$$

$$
\frac{(4 x-1)(3 x+1)}{x(4 x+1)} \text { or } \frac{12 x^{2}+x-1}{4 x^{2}+x}
$$

E) $\frac{x}{x^{2}-x-12}+\frac{x-2}{x^{2}-16}$
F) $\frac{4}{x+6}-\frac{x+3}{x^{2}-36}$

$$
\frac{2 x^{2}+5 x-6}{(x+4)(x-4)(x+3)}
$$

$$
\frac{3(x-9)}{x^{2}+x-2}
$$

G) $\frac{x+a}{x-a}-\frac{x^{2}-a^{2}}{a x-a^{2}}$

$$
\frac{a x+2 a^{2}-x^{2}}{a(x-a)}
$$

$$
\frac{3(x+9)}{x^{2}+x-2}
$$

H) $\frac{3 x+13}{x^{2}-3 x-10}-\frac{16}{x^{2}-6 x+5}$

