Acc. Geom/Algebra II

Name

Transformations of Rationals and others

Period _____Date _____

I. As we've learned earlier, $y = x^2$ can be transformed into $f(x) = a (x - h)^2 + k$.

- What effect does a have on the graph of y = x²?
 Vertically stretches (or compresses if abs(a) < 1) the entire graph by a factor of a.
- 2. What effect does **h** have on the graph of $y = x^2$?
- 3. What effect does **k** have on the graph of $y = x^2$?

II. You also know what $y = x^3$ looks like now. So consider the graph $g(x) = \mathbf{a} \cdot (x - \mathbf{h})^3 + \mathbf{k}$.

- 1. What effect does **a** have on the graph of $y = x^{3}$?
- 2. What effect does **h** have on the graph of $y = x^{3}$?
- 3. What effect does **k** have on the graph of $y = x^{3}$?

III. The parent graph of a rational function is $y = \frac{1}{x}$. So consider $h(x) = k + \frac{a}{x - h}$.

- 1. What effect does **a** have on the graph of $y = \frac{1}{x}$?
- 2. What effect does **h** have on the graph of $y = \frac{1}{x}$?
- 3. What effect does **k** have on the graph of $y = \frac{1}{x}$?

IV. Look at all the cases above, and then describe the locations of the variables in relation to the parent graph.

1. Where is **a** located?

What does **a** do?

What happens when **a** < 0?

- 2. Where is **h** located?
 - What does h do?

3. Where is k located?

What does k do?

- V. Consider the sketch of f(x) to the right. Answer questions about f(x) and sketch each of the following transformations of f(x).
- 1. f(1) = <u>-.25</u> 2. f(2) = _____
- 3. f(0) = _____ 4. f(-1) = _____
- 5. Sketch f(**x** 2)

7. Sketch f(x + 1) - 2

8. Sketch -f(x)

13. Sketch 1 + 3f(x - 2)

12. Sketch $(\frac{1}{2})f(x)$

VI. For each of the following: a) **Evaluate** f(2), b) Describe the **transformations** of y = 1/x that have been done to this function, c) Use this information to **sketch** the graph, d) Find the **domain** of the function, e) Find the **range** of the function, and f) Write **equations** of all the **asymptotes**.

Problem:	$f(x) = \frac{2}{x-1}$	$g(x)=\frac{-3}{x}+4$	$h(x) = \frac{1}{2(x+3)} - 1$
Evaluate at x = 2	f(2) =	g(2) =	h(2) =
Transformations			
Sketch the graph			
Domain			
Range			
Asymptotes			

VII. For each of the following: a) **Evaluate** f(-3), b) **Divide** this rational function to write its **quotient** in transformation form, c) Describe the **transformations** of y = 1/x that have been done to this function, d) Use this information to **sketch** the graph, e) Find the **domain** of the function, f) Find the **range** of the function, and g) Write **equations** of all the **asymptotes**.

Problem:	$f(x) = \frac{x-2}{x+1}$	$g(x)=\frac{3x+5}{x-2}$	$h(x) = \frac{x-4}{2x-5}$
Evaluate x = -3	f(-3) =	g(-3) =	h(-3) =
Quotient	$1 - \frac{3}{x+1}$ or $-\frac{3}{x+1} + 1$		
Transformations			
Sketch the graph			
Domain			
Range			
Asymptotes			

VIII. REVIEW of what I've already mastered: Perform the indicated operations, and **simplify completely**.

A)
$$\frac{x+3}{x-7} \cdot \frac{x^2-6x-7}{x^2-9}$$

B) $\frac{25x^2-100}{x^2-x-12} \div \frac{x^2-2x-24}{2x^2-72}$
C) $\frac{\frac{1}{x+2}}{1+\frac{1}{x+2}}$
D) $\frac{12+\frac{1}{x}-\frac{1}{x^2}}{4+\frac{1}{x}}$
E) $\frac{x}{x^2-x-12} + \frac{x-2}{x^2-16}$
F) $\frac{4}{x+6} - \frac{x+3}{x^2-36}$
G) $\frac{x+a}{x-a} - \frac{x^2-a^2}{ax-a^2}$
H) $\frac{3x+13}{x^2-3x-10} - \frac{16}{x^2-6x+5}$