Acc. Geom/Algebra II
Graphing Rational Functions Part 2 Notes

REVIEW: $F(x)=\frac{2 x-5}{x+3}$ will have
a vertical asymptote at \qquad _,
a horizontal asymptote at \qquad ,
an x-intercept at \qquad ,
and a \boldsymbol{y}-intercept at \qquad .
Use this information to sketch $F(x)$ to the right. Use long division to divide $2 x-5$ by $x+3$ below:

Name \qquad
Period \qquad Date \qquad

How does this long division explain the transformations that have happened to $y=1 / x$ to produce the graph of $f(x)$?

Consider: $G(x)=\frac{4 x+4}{x^{2}-4}$. It has
vertical asymptotes at \qquad ,
a horizontal asymptote at \qquad ,
a \boldsymbol{y}-intercept at \qquad and x-intercept at Use this information to sketch this graph to the right.

Now look at: $H(x)=\frac{x^{3}-x}{x^{2}-x-2}$

It will have a hole at \qquad a vertical asymptote at \qquad ,
x-intercepts at \qquad a \boldsymbol{y}-intercept at \qquad and no horizontal asymptote. Why?

Sketch $H(x)$ on your calculator. What happens to $H(x)$ as $x \Rightarrow \infty$?

Now sketch $y 2=x+1$ on your calculator. What really happens as $x \Rightarrow \infty$?
$H(x)$ has a slant asymptote because as $x \Rightarrow \infty, H(x) \Rightarrow x+1$. Use long division to find that slant asymptote.

Consider: $K(x)=\frac{x^{2}-5 x+4}{x+3}$
You already know that the vertical asymptote is \qquad
The x-intercepts are \qquad and the y-intercepts are \qquad .
This function has no holes because...

Now, use long division to rewrite $K(x)$ as a "mixed fraction".

A slant asymptote, like a horizontal asymptote is a line* that a graph approaches as $\boldsymbol{x} \Rightarrow \infty$. Therefore, as $\boldsymbol{x} \Rightarrow \infty$ in the mixed fraction above, what do the \boldsymbol{y} values approach? *or other function

This line is the slant asymptote.

Find the slant asymptotes of these three functions:
A) $f(x)=\frac{3 x^{2}+5 x-7}{x+3}$
B) $y=\frac{x^{3}+6 x^{2}-2 x+7}{x^{2}+2 x-4}$
C) $g(x)=\frac{x^{3}+4 x^{2}-5 x}{x-2}$

As you can see from example () above, sometimes "slant asymptotes" aren't lines. What type of function is the asymptote in part C ?

How did the equation of the original rational function predict this result?

What conclusions can you draw from this exercise?

