Acc. Geom/Algebra II
Graphing Rational Functions Worksheet \#1

Name \qquad
\qquad Date \qquad

1. Consider the function $f(x)=x^{2}$.
A) Sketch this function to the right.
B) What is its domain? \qquad
C) What is its range? \qquad
D) What are coordinates of its vertex? \qquad
2. Consider the function $g(x)=\frac{1}{x}$.
A) Sketch this function to the right.
B) What is its domain? \qquad
C) What is its range? \qquad
D) An asymptote is a line that a graph gets very close to. What are equations of the asymptotes of this graph?

3. Consider the equation of $f(x)$, if it is translated up 4 units and to the right 3 units.
A) Write the equation of this new function. \qquad
B) How can we tell from the equation that is has been moved? \qquad
C) What is the new domain? \qquad
D) What is the new range? \qquad
E) What are coordinates of the new vertex?
4. Consider the equation $h(x)=4+\frac{1}{x-3}$.
A) Graph this function in the space to the right.
B) How is it like $g(x)$? \qquad
C) How is it different from $g(x)$?
D) What is the new domain? \qquad
E) What is the new range? \qquad

F) What are equations of the asymptotes?
5. Consider the function $\mathrm{j}(\mathrm{x})=\frac{3 x-4}{x+2}$.
A) Graph this function in the space to the right.
B) How is it like $g(x)$? \qquad
C) How is it different from $g(x)$? \qquad
D) Divide this function and write the quotient.

E) Use the above quotient to describe the transformations on $g(x)$.
F) What is the domain? \qquad
G) What is the range? \qquad
H) What are equations of the asymptotes?
6. Consider the function $F(x)=\frac{x^{2}-x-6}{x-3}$
A) Graph this function in the space to the right.
B) Why doesn't it appear to have asymptotes?
C) Factor the numerator and simplify this function.
D) What is the domain? \qquad
E) What is the range? \qquad

$F(3)$ is undefined (actually, it is called indeterminate form) when $x=3$. The point $(3,5)$ is described as a "removable discontinuity" in calculus, but we shall describe it as a hole in our graph. How could we algebraically get that \boldsymbol{y}-value from our equation?
7. For each of the following: a) find the domain of the function, b) divide to write the function in transformational form, c) find equations of all the asymptotes, d) describe the transformations on $y=1 / x$ that have been done to this function and, e) sketch the graph.
A) $f(x)=\frac{5}{x-2}$
B) $f(x)=\frac{-2 x+5}{x+1}$
C) $f(x)=\frac{3 x-2}{x}$
