Acc. Geom/Algebra II

Analyzing Graphs of Exponential Functions

- 1.) The three exponential functions $y = 2^{x}$,
 - $y = 3^{x}$, and $y = e^{x}$ are shown below.

Which formula goes with which graph? *Explain* your reasoning.

3.) The graphs of $y = e^x$, $y = 2e^x$, and $y = 3e^x$ are shown below. *Explain how* you can match these equations to their graphs *without* using a calculator.

- 5.) Suppose you use your calculator to graph $y = 1.04^{5x}$. You correctly enter $y = 1.04^{\circ}(5x)$, and see the graph shown to the right. A friend graphed the function by entering $y = 1.04^{5x}$ in his calculator and said, "The graph is a straight line, so I must have the wrong window." *Explain why* changing the window will <u>not</u> correct your friend's error.
- 6.) Consider the exponential functions graphed to the right, and the six constants **a**, **b**, **c**, **d**, **p**, and **g**.
 - (a) Which of these constants are definitely positive?
 - (b) Which of these constants are **definitely** between 0 and 1?
 - (c) Which of these constants could be between 0 and 1?
 - (d) Which two of these constants are **definitely** equal?
 - (e) Which one of the following pairs of constants could be equal? a and p b and d b and q d and q

2.) The graphs of $f(x) = (0.7)^x$,

 $g(x) = (0.8)^{x}$, and $h(x) = (0.85)^{x}$ are shown below. *Explain how* you can match these equations to their graph *without* using a calculator.

4.) The graphs of $y = e^x$, $y = e^{-x}$, and $y = -e^x$ are shown below.

you can match these equations to their graphs *without* using a calculator.

7.) For which value(s) of a and b is $y = ab^x$ an increasing function? ... a decreasing function?

- 8.) The functions $f(x) = \left(\frac{1}{2}\right)^x$ and $g(x) = \frac{1}{x}$ are similar in that they both tend toward zero as x becomes large. Using your calculator, determine which function, f or g, approaches zero faster.
- 9.) List the specific transformations needed to transform the graph of $h(x) = 2^{x}$ into the graph of the given functions:

 - (a) $f(x) = 2^{x} 5$ (b) $g(x) = 3(2^{x})$ (c) $k(x) = 2^{x+2} 5$ (d) $m(x) = -5(2^{x-1}) + 7$
- 10.) Match each of the following functions to the graphs shown below:
 - (a) $f(x) = b^{x}$
 - (b) $q(x) = b^{x} + 3$
 - (c) $h(x) = b^{x+5}$

- 11.) Match each of the following functions to the graphs shown below:
 - (a) $f(x) = a^{x}$ (b) $q(x) = -3a^{x}$ (c) $h(x) = a^{x+5}$
 - (d) $k(x) = -3a^{x} 2$

- 12.) Determine whether each of the following functions are even (symmetric across the y-axis), odd (rotational symmetry around the origin), or neither. (HINT: Look at the possible symmetry of their graphs.)
 - (b) $g(x) = \frac{e^x + e^{-x}}{2}$ (c) $h(x) = e^{-x^2}$ (a) $f(x) = 10^{x}$
- 13.) Explain why $e^{x} + e^{-x}$ is approximately equal to e^{x} when x is very large.
- 14.) The population of a colony of fruit flies t days from now is given by the function $P(t) = 100 \ 3^{t/10}$.
 - (a) What will the population be in 15 days? ... in 25 days?
 - (b) How many days will it take the population to reach 2500?
- 15.) A certain type of bacteria grows according to the function $f(t) = 5000 e^{0.4055t}$, where the time t is measured in hours.
 - (a) What will the population be in 8 hours?
 - (b) When will the population reach one million?