Acc. Geom/Algebra II	Name	SOLUTIONS .
Exponential Function Graphs & "e"	Period	Date

For each of the following functions, identify first whether it represents a type of "*exponential growth*" or "*exponential decay*". Then identify the *y-intercept* and the *equation* of the *asymptote* of the graph of the function. Also state the *domain* and *range* of the function, and sketch a graph.

Example: $y = \frac{1}{4} \cdot 6^x$ "Growth" or "Decay"? Exponential growth y -intercept: $\left(0, \frac{1}{4}\right)$ Equation of Asymptote: $y = 0$ Domain: all Real numbers Range: $y > 0$	1.) $y = 11 \cdot 3^{x}$ "Growth" or "Decay"? <u>Exponential growth</u> y-intercept:(0, 11) Equation of Asymptote: $y = 0$ Domain: <u>all Real numbers</u> Range: <u>$y > 0$</u>
2.) $\boldsymbol{y} = \left(\frac{1}{5}\right)^{-\boldsymbol{x}} + 4$ $\boldsymbol{y} = 5^{\boldsymbol{x}} + 4$ "Growth" or "Decay"? <u>Exponential growth</u>	3.) $y = 7 \cdot \left(\frac{3}{8}\right)^x - 1$
y-intercept:(0,5)	"Growth" or "Decay"? <u>Exponential dacay</u> y-intercept:(0,6)
Equation of Asymptote: <u>y = 4</u>	Equation of Asymptote: <u>y = ~1</u>
Domain:	Domain: <i>all Real numbers</i>
Range: y > 4	Range: / > -I
4.) $y = 2 \cdot e^x$	5.) $y = \frac{5}{6} \cdot (0.9)^{x}$
"Growth" or "Decay"? <u>Exponential growth</u>	"Growth" or "Decay"? <u>Exponential decay</u>
y-intercept:(0, 2)	\mathbf{y} -intercept:
Equation of Asymptote: <u>y = 0</u>	Equation of Asymptote: y = 0
Domain: <u>all Real numbers</u>	Domain: <u>all Real numbers</u>
Range:	Range: y > 0
	<u>Continued</u> on the back

Warren Buffett, smart investor that he is, invests \$100 in an account that pays 100 % annual interest. How much money will he have in this account at the end of one year if:

a) the money is compounded annually.	\$200.00
b) the money is compounded quarterly.	\$244.14
c) the money is compounded monthly.	<u>\$261.30</u>
d) the money is compounded weekly.	\$269.26
e) the money is compounded daily.	<u>\$271.46</u>
f) the money is compounded hourly	\$271.81
g) the money is compounded each minute	\$271.83
h) What do these calculations have to do with	th the number " e "?

Given that the initial principal P deposited in a savings account that pays interest at an annual rate of r(expressed as a decimal), compounded n times per year for t years, can be modeled by the equation:

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

e = 2.718281828459

Simplify each of the following expressions completely. Leave answers in exact form – do <u>not</u> give decimal approximations for answers!

- 6.) $e^{3} \cdot e^{6} = e^{9}$ 7.) $\frac{e^{-7x}}{e^{2x}} = \frac{1}{e^{9x}}$ 8.) $(4e^{-5})^{-1} = \frac{e^{5}}{4}$ 9.) $\sqrt{16e^{2x}} = 4e^{x}$ 10.) $\frac{-3e^{4}}{e} = -3e^{3}$ 11.) $\left(\frac{2e^{-1}}{8e^{-9}}\right)^{\frac{1}{2}} = \frac{e^{4}}{2}$ 12.) $\frac{7e^{x}}{e^{7x}} = \frac{7}{e^{6x}}$ 13.) $(5e^{-2})^{3} = \frac{125}{e^{6}}$
- 14.) $\sqrt[3]{64e^{6x}} = 4e^{2x}$ 15.) $e^{3x} \cdot e^{2-3x} = e^{2}$

16.) Write an exponential function in the form $y = a \cdot b^x$ that goes through the points (0,4) and (5,128). $y = 4 \cdot 2^x$

17.) Write an exponential function in the form $y = a \cdot b^x$ that goes through the points (1,81) and (4,3).

$$\boldsymbol{y} = 243 \cdot \left(\frac{1}{3}\right)^{3}$$