\qquad

Arcs of a Circle \& Central Angles

Period \qquad Date \qquad

Definitions: A central angle of a circle is an angle whose vertex is the center of the circle. An arc consists of two points on a circle and all points on the circle needed to connect those points by a single path. If $\mathrm{m} \angle A C B$ is less than 180°, then the points on the circle that lie in the interior of $\angle A C B$ form a minor arc, $A B$ (also denoted as $A C B$), with endpoints A and B. The points on circle C that do not lie on minor arc $A B$ form a major arc, $A D B$, also with endpoints A and B. The
 measure of a minor arc is the measure of its central angle. The measure of a major arc is the difference between 360° and the measure of its related minor arc. Adjacent arcs can be added and has a measure of the sum of the two arc measures. Congruent arcs are two arcs in the same circle or congruent circles that have the same measure.

A semicircle is an arc whose endpoints are \qquad
\qquad , and which has a measure of \qquad
I. Determine whether the indicated arc is a minor arc, a major arc, or a semicircle of $\odot C .(\overline{A B}$ and $\overline{F E}$ are diameters of $\odot C$.)
1.) $A E$
2.) $A D B$
3.) $F D E$
4.) $D F B$
5.) FA
6.) BE
7.) BDA
8.) FB

II. $\overline{M Q}$ and $\overline{N R}$ are diameters of $\odot O$. Find each of the following indicated measures:
9.) mMN
10.) $m N Q$
11.) $m N Q R$
12.) $m M R P$
13.) $m Q R$
14.) $m M R$
15.) $m Q M R$
16.) $m P Q$
17.) $m P R N$
18.) $m M Q N$

III. Find the measure of $M N$ in each of the following circles.
19.)

20.)

21.)

Some (common sense) theorems to consider:
Theorem 79: If two central angles of a circle (or of congruent circles) are congruent, then their intercepted arcs are congruent.

Theorem 80: If two arcs of a circle (or of congruent circles) are congruent, then their corresponding central angles are congruent.

Theorem 81: If two central angles of a circle (or of congruent circles) are congruent, then the corresponding chords are congruent.

Theorem 82: If two chords of a circle (or of congruent circles) are congruent, then the corresponding central angles are congruent.

Theorem 83: If two arcs of a circle (or of congruent circles) are congruent, then the corresponding chords are congruent.

Theorem 84: If two chords of a circle (or of congruent circles) are congruent, then the corresponding arcs are congruent.

IV. Match each item in the left column with the correct term in the right column.

22.)	QRS	A) Radius
23.)	$\overline{Q S}$	B) Diameter
24.)	RQS	C) Chord
25.)	$R S$	D) Minor arc
26.)	$\overline{R S}$	E) Major arc
27.)	$\angle R P Q$	F) Semicircle
28.)	$\overline{P S}$	G) Central angle

29.) What fractional part of a circle is an arc that measures
a) 8°
b) 240°
c) 144°
d) 315°
30.) Given: $\overline{A D}$ is a diameter of $\odot E$.
C is the midpoint of $B D$.
$m A B=9 x+30$.
$m C D=54-x$.
Find: $m \angle A E C$

