\qquad
\qquad Date \qquad

A circle is the set of all points in a plane that are a given distance from a given point in a plane. The given point is the \qquad of the circle, and the given distance is the of the circle.

Some definitions and terms you will need to know about circles...
A chord of a circle is \qquad
The diameter of a circle is \qquad
A secant line is \qquad
A tangent line is \qquad
A point of tangency is \qquad
Circles are congruent if \qquad
Concentric circles are \qquad
Circles can intersect in \qquad points.

A point P is inside (in the interior of) a circle O if \qquad
A point P is outside (in the exterior of) a circle O if \qquad
A point P is on circle O if \qquad
The equation for area of a circle is \qquad
The equation for circumference (perimeter) of a circle is \qquad

Special relationships between the radii and chords of circles use the following three theorems:
THEOREM \#1: If a radius is perpendicular to a chord, then it bisects the chord. Given: Circle $O, \overline{O D} \perp \overline{A B}$
Prove: $\overline{O D}$ bisects $\overline{A B}$

THEOREM \#2: If a radius of a circle bisects a chord (not the diameter), then it is perpendicular to the chord.
Given: Circle $O, \overline{O H}$ bisects $\overline{E F}$
Prove: $\overline{O H} \perp \overline{E F}$

THEOREM \#3: The perpendicular bisector of a chord passes through the center of the circle.
Given: $\overleftrightarrow{P Q}$ is the perpendicular bisector of $\overline{C D}$
Prove: $\overrightarrow{P Q}$ passes through the point O.

Problems:

1.) Chord $\overline{A B}$ measures 12 mm and the radius of $\odot P$ is 10 mm . Find the distance from $\overline{A B}$ to P.

2.) Find the length of a chord that is 15 cm from the center of a circle with a radius of 17 cm .
3.) Find the distance from the center of a circle to a chord 30 m long, if the diameter of the circle is 34 m .
4.) Find the radius of a circle if a 24 inch chord is 9 inches from the center.
5.) Two circles intersect and share a common chord 24 cm long. The centers of the circles are 21 cm apart. The radius of one circle is 13 cm . Find the radius of the other circle.
6.) $\overline{P Q}$ is a diameter of $\odot O . P=(-3,17)$ and $Q=(5,2)$. Find the center and the radius of $\odot O$.
7.) $\odot P$ just touches (is tangent to) the x-axis. $P=(15,13)$ and $Q=(19,16)$.
a) Find the radius of $\odot P$.
b) Find $P Q$.
c) Find the length of $\overline{A B}$.
8.) Find the radius of a circle in which a 48 cm chord is 8 cm closer to the center than a 40 cm chord.
9.) Given: Circle $Q, \overline{Q T} \perp \overline{R S}$

Prove: $\overrightarrow{T Q}$ bisects $\angle R T S$

10.) Given: $P Q R S$ is an isosceles trapezoid, with $\stackrel{\rightharpoonup}{S R} \| \stackrel{\rightharpoonup}{P Q}$
Prove: $\odot P \cong \odot Q$

